122 lines
4.6 KiB
Python
122 lines
4.6 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from scipy import integrate
|
|
import pandas as pd
|
|
from sklearn.linear_model import LinearRegression
|
|
# from tqdm import tqdm #Import all needed modules
|
|
|
|
columns = ["Material", "Density", "Radius", "Mass", "Temperature", "Pressure", "Height", "Time"]
|
|
columnsNoMaterial = ["Density", "Radius", "Mass", "Temperature", "Pressure", "Height", "Time"]
|
|
units = ["", "kg/m^3", "m", "kg", "K", "Pa", "m", "s"]
|
|
materials = ["magnesium", "polycarbonate", "silica", "zinc_oxide", "silicon_carbide", "titanium", "iron"]
|
|
radii = [0.005, 0.01, 0.015, 0.02, 0.025]
|
|
|
|
def getData(file):
|
|
columns = ["Material", "Density", "Radius", "Mass", "Temperature", "Pressure", "Height", "Time"]
|
|
data = pd.read_csv(file, sep=',', names=columns, skiprows=9, on_bad_lines='skip')
|
|
|
|
data["Density"] = pd.to_numeric(data["Density"], errors='coerce')
|
|
data["Temperature"] = pd.to_numeric(data["Temperature"], errors='coerce')
|
|
data["Time"] = pd.to_numeric(data["Time"], errors='coerce')
|
|
|
|
for column in columns:
|
|
if column == "Material":
|
|
for i in data.index:
|
|
if data[column][i] not in materials:
|
|
data.drop(i, inplace=True)
|
|
else:
|
|
for i in data.index:
|
|
if data[column][i] < 0:
|
|
data.loc[i, column] = -data.loc[i, column]
|
|
|
|
data.dropna(inplace=True)
|
|
return data
|
|
|
|
def columnStats(column, units):
|
|
min = df[column].min()
|
|
max = df[column].max()
|
|
mean = df[column].mean()
|
|
stdDev = df[column].std()
|
|
|
|
print(f'Statistics for {column}')
|
|
print(f'Minimum: {min}{units}')
|
|
print(f'Maximum: {max}{units}')
|
|
print(f'Mean: {mean}{units}')
|
|
print(f'Standard Deviation: {stdDev}{units}')
|
|
print()
|
|
|
|
df = getData('exercise3data.csv')
|
|
|
|
####Part 1
|
|
|
|
# for i in range(len(columns)):
|
|
# if columns[i] == "Material":
|
|
# continue
|
|
# else:
|
|
# columnStats(columns[i], units[i])
|
|
|
|
# for material in materials:
|
|
# materialDf = df[df["Material"] == material]
|
|
# for radius in radii:
|
|
# radiusDf = materialDf[materialDf["Radius"] == radius]
|
|
# print(radiusDf)
|
|
# plt.scatter(radiusDf["Height"], radiusDf["Time"], label=f'Radius {radius}m')
|
|
|
|
# plt.xlabel("Drop Height/m")
|
|
# plt.ylabel("Fall Time/s")
|
|
# plt.title(f'Material: {material}')
|
|
# plt.legend()
|
|
# plt.show()
|
|
|
|
####Part 2
|
|
|
|
# dfNoMaterial = df.drop("Material", axis=1)
|
|
# corrMatrix = dfNoMaterial.corr(method='pearson')
|
|
# print(corrMatrix)
|
|
|
|
# fig, ax = plt.subplots()
|
|
# im = ax.imshow(corrMatrix, cmap="gnuplot", vmin=-1, vmax=1)
|
|
|
|
# ax.set_xticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
|
|
# ax.set_yticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
|
|
|
|
# for i in range(len(columnsNoMaterial)):
|
|
# for j in range(len(columnsNoMaterial)):
|
|
# text = ax.text(j, i, round(corrMatrix[columnsNoMaterial[i]][columnsNoMaterial[j]], 2),
|
|
# ha="center", va="center", color="w")
|
|
|
|
# fig.colorbar(im)
|
|
# fig.tight_layout()
|
|
# plt.show()
|
|
|
|
####Part 3
|
|
|
|
features = df[["Density", "Radius", "Mass", "Temperature", "Pressure", "Height"]]
|
|
targets = df["Time"]
|
|
|
|
linearReg = LinearRegression()
|
|
linearFit = linearReg.fit(features, targets)
|
|
|
|
for i in range(len(linearFit.feature_names_in_)):
|
|
print(f'The coefficient of {linearFit.feature_names_in_[i]} is {linearFit.coef_[i]} {units[i+1]}')
|
|
|
|
ironDf = df[df["Material"] == "iron"]
|
|
|
|
def fitByMeans(density, radius, mass, temp, pressure, height):
|
|
coefs = linearFit.coef_
|
|
time = linearFit.intercept_+(density*coefs[0])+(radius*coefs[1])+(mass*coefs[2])+(temp*coefs[3])+(pressure*coefs[4])+(height*coefs[5])
|
|
return time
|
|
|
|
for radius in radii:
|
|
radiusDf = ironDf[ironDf["Radius"] == radius]
|
|
plt.scatter(radiusDf["Height"], radiusDf["Time"],label="Experimental data")
|
|
radiusFeatures = radiusDf[["Density", "Radius", "Mass", "Temperature", "Pressure", "Height"]]
|
|
plt.scatter(radiusDf["Height"], linearReg.predict(radiusFeatures),label="Predicted data")
|
|
heightBounds = [radiusDf["Height"].min(),radiusDf["Height"].max()]
|
|
linearByMeans = [fitByMeans(radiusDf["Density"].mean(),radiusDf["Radius"].mean(),radiusDf["Mass"].mean(),radiusDf["Temperature"].mean(),radiusDf["Pressure"].mean(),radiusDf["Height"].min()),fitByMeans(radiusDf["Density"].mean(),radiusDf["Radius"].mean(),radiusDf["Mass"].mean(),radiusDf["Temperature"].mean(),radiusDf["Pressure"].mean(),radiusDf["Height"].max())]
|
|
plt.plot(heightBounds,linearByMeans,label="Fit Using Means")
|
|
plt.xlabel("Drop Height/m")
|
|
plt.ylabel("Fall Time/s")
|
|
plt.legend()
|
|
plt.title(f'Iron data and predictions for radius of {radius}m')
|
|
plt.show()
|