Uni-Computing/Exercise 3/exercise3.py
2026-02-15 13:29:47 +00:00

122 lines
4.6 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
import pandas as pd
from sklearn.linear_model import LinearRegression
# from tqdm import tqdm #Import all needed modules
columns = ["Material", "Density", "Radius", "Mass", "Temperature", "Pressure", "Height", "Time"]
columnsNoMaterial = ["Density", "Radius", "Mass", "Temperature", "Pressure", "Height", "Time"]
units = ["", "kg/m^3", "m", "kg", "K", "Pa", "m", "s"]
materials = ["magnesium", "polycarbonate", "silica", "zinc_oxide", "silicon_carbide", "titanium", "iron"]
radii = [0.005, 0.01, 0.015, 0.02, 0.025]
def getData(file):
columns = ["Material", "Density", "Radius", "Mass", "Temperature", "Pressure", "Height", "Time"]
data = pd.read_csv(file, sep=',', names=columns, skiprows=9, on_bad_lines='skip')
data["Density"] = pd.to_numeric(data["Density"], errors='coerce')
data["Temperature"] = pd.to_numeric(data["Temperature"], errors='coerce')
data["Time"] = pd.to_numeric(data["Time"], errors='coerce')
for column in columns:
if column == "Material":
for i in data.index:
if data[column][i] not in materials:
data.drop(i, inplace=True)
else:
for i in data.index:
if data[column][i] < 0:
data.loc[i, column] = -data.loc[i, column]
data.dropna(inplace=True)
return data
def columnStats(column, units):
min = df[column].min()
max = df[column].max()
mean = df[column].mean()
stdDev = df[column].std()
print(f'Statistics for {column}')
print(f'Minimum: {min}{units}')
print(f'Maximum: {max}{units}')
print(f'Mean: {mean}{units}')
print(f'Standard Deviation: {stdDev}{units}')
print()
df = getData('exercise3data.csv')
####Part 1
# for i in range(len(columns)):
# if columns[i] == "Material":
# continue
# else:
# columnStats(columns[i], units[i])
# for material in materials:
# materialDf = df[df["Material"] == material]
# for radius in radii:
# radiusDf = materialDf[materialDf["Radius"] == radius]
# print(radiusDf)
# plt.scatter(radiusDf["Height"], radiusDf["Time"], label=f'Radius {radius}m')
# plt.xlabel("Drop Height/m")
# plt.ylabel("Fall Time/s")
# plt.title(f'Material: {material}')
# plt.legend()
# plt.show()
####Part 2
# dfNoMaterial = df.drop("Material", axis=1)
# corrMatrix = dfNoMaterial.corr(method='pearson')
# print(corrMatrix)
# fig, ax = plt.subplots()
# im = ax.imshow(corrMatrix, cmap="gnuplot", vmin=-1, vmax=1)
# ax.set_xticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
# ax.set_yticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
# for i in range(len(columnsNoMaterial)):
# for j in range(len(columnsNoMaterial)):
# text = ax.text(j, i, round(corrMatrix[columnsNoMaterial[i]][columnsNoMaterial[j]], 2),
# ha="center", va="center", color="w")
# fig.colorbar(im)
# fig.tight_layout()
# plt.show()
####Part 3
features = df[["Density", "Radius", "Mass", "Temperature", "Pressure", "Height"]]
targets = df["Time"]
linearReg = LinearRegression()
linearFit = linearReg.fit(features, targets)
for i in range(len(linearFit.feature_names_in_)):
print(f'The coefficient of {linearFit.feature_names_in_[i]} is {linearFit.coef_[i]} {units[i+1]}')
ironDf = df[df["Material"] == "iron"]
def fitByMeans(density, radius, mass, temp, pressure, height):
coefs = linearFit.coef_
time = linearFit.intercept_+(density*coefs[0])+(radius*coefs[1])+(mass*coefs[2])+(temp*coefs[3])+(pressure*coefs[4])+(height*coefs[5])
return time
for radius in radii:
radiusDf = ironDf[ironDf["Radius"] == radius]
plt.scatter(radiusDf["Height"], radiusDf["Time"],label="Experimental data")
radiusFeatures = radiusDf[["Density", "Radius", "Mass", "Temperature", "Pressure", "Height"]]
plt.scatter(radiusDf["Height"], linearReg.predict(radiusFeatures),label="Predicted data")
heightBounds = [radiusDf["Height"].min(),radiusDf["Height"].max()]
linearByMeans = [fitByMeans(radiusDf["Density"].mean(),radiusDf["Radius"].mean(),radiusDf["Mass"].mean(),radiusDf["Temperature"].mean(),radiusDf["Pressure"].mean(),radiusDf["Height"].min()),fitByMeans(radiusDf["Density"].mean(),radiusDf["Radius"].mean(),radiusDf["Mass"].mean(),radiusDf["Temperature"].mean(),radiusDf["Pressure"].mean(),radiusDf["Height"].max())]
plt.plot(heightBounds,linearByMeans,label="Fit Using Means")
plt.xlabel("Drop Height/m")
plt.ylabel("Fall Time/s")
plt.legend()
plt.title(f'Iron data and predictions for radius of {radius}m')
plt.show()