More Ex 3
This commit is contained in:
parent
8151dd11c8
commit
5c72bc22b4
1 changed files with 51 additions and 14 deletions
|
|
@ -2,6 +2,7 @@ import matplotlib.pyplot as plt
|
|||
import numpy as np
|
||||
from scipy import integrate
|
||||
import pandas as pd
|
||||
from sklearn.linear_model import LinearRegression
|
||||
# from tqdm import tqdm #Import all needed modules
|
||||
|
||||
columns = ["Material", "Density", "Radius", "Mass", "Temperature", "Pressure", "Height", "Time"]
|
||||
|
|
@ -46,6 +47,8 @@ def columnStats(column, units):
|
|||
|
||||
df = getData('exercise3data.csv')
|
||||
|
||||
####Part 1
|
||||
|
||||
# for i in range(len(columns)):
|
||||
# if columns[i] == "Material":
|
||||
# continue
|
||||
|
|
@ -65,21 +68,55 @@ df = getData('exercise3data.csv')
|
|||
# plt.legend()
|
||||
# plt.show()
|
||||
|
||||
dfNoMaterial = df.drop("Material", axis=1)
|
||||
corrMatrix = dfNoMaterial.corr(method='pearson')
|
||||
print(corrMatrix)
|
||||
####Part 2
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
im = ax.imshow(corrMatrix, cmap="gnuplot", vmin=-1, vmax=1)
|
||||
# dfNoMaterial = df.drop("Material", axis=1)
|
||||
# corrMatrix = dfNoMaterial.corr(method='pearson')
|
||||
# print(corrMatrix)
|
||||
|
||||
ax.set_xticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
|
||||
ax.set_yticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
|
||||
# fig, ax = plt.subplots()
|
||||
# im = ax.imshow(corrMatrix, cmap="gnuplot", vmin=-1, vmax=1)
|
||||
|
||||
for i in range(len(columnsNoMaterial)):
|
||||
for j in range(len(columnsNoMaterial)):
|
||||
text = ax.text(j, i, round(corrMatrix[columnsNoMaterial[i]][columnsNoMaterial[j]], 2),
|
||||
ha="center", va="center", color="w")
|
||||
# ax.set_xticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
|
||||
# ax.set_yticks(range(len(columnsNoMaterial)), labels=columnsNoMaterial)
|
||||
|
||||
fig.colorbar(im)
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
# for i in range(len(columnsNoMaterial)):
|
||||
# for j in range(len(columnsNoMaterial)):
|
||||
# text = ax.text(j, i, round(corrMatrix[columnsNoMaterial[i]][columnsNoMaterial[j]], 2),
|
||||
# ha="center", va="center", color="w")
|
||||
|
||||
# fig.colorbar(im)
|
||||
# fig.tight_layout()
|
||||
# plt.show()
|
||||
|
||||
####Part 3
|
||||
|
||||
features = df[["Density", "Radius", "Mass", "Temperature", "Pressure", "Height"]]
|
||||
targets = df["Time"]
|
||||
|
||||
linearReg = LinearRegression()
|
||||
linearFit = linearReg.fit(features, targets)
|
||||
|
||||
for i in range(len(linearFit.feature_names_in_)):
|
||||
print(f'The coefficient of {linearFit.feature_names_in_[i]} is {linearFit.coef_[i]} {units[i+1]}')
|
||||
|
||||
ironDf = df[df["Material"] == "iron"]
|
||||
|
||||
def fitByMeans(density, radius, mass, temp, pressure, height):
|
||||
coefs = linearFit.coef_
|
||||
time = linearFit.intercept_+(density*coefs[0])+(radius*coefs[1])+(mass*coefs[2])+(temp*coefs[3])+(pressure*coefs[4])+(height*coefs[5])
|
||||
return time
|
||||
|
||||
for radius in radii:
|
||||
radiusDf = ironDf[ironDf["Radius"] == radius]
|
||||
plt.scatter(radiusDf["Height"], radiusDf["Time"],label="Experimental data")
|
||||
radiusFeatures = radiusDf[["Density", "Radius", "Mass", "Temperature", "Pressure", "Height"]]
|
||||
plt.scatter(radiusDf["Height"], linearReg.predict(radiusFeatures),label="Predicted data")
|
||||
heightBounds = [radiusDf["Height"].min(),radiusDf["Height"].max()]
|
||||
linearByMeans = [fitByMeans(radiusDf["Density"].mean(),radiusDf["Radius"].mean(),radiusDf["Mass"].mean(),radiusDf["Temperature"].mean(),radiusDf["Pressure"].mean(),radiusDf["Height"].min()),fitByMeans(radiusDf["Density"].mean(),radiusDf["Radius"].mean(),radiusDf["Mass"].mean(),radiusDf["Temperature"].mean(),radiusDf["Pressure"].mean(),radiusDf["Height"].max())]
|
||||
plt.plot(heightBounds,linearByMeans,label="Fit Using Means")
|
||||
plt.xlabel("Drop Height/m")
|
||||
plt.ylabel("Fall Time/s")
|
||||
plt.legend()
|
||||
plt.title(f'Iron data and predictions for radius of {radius}m')
|
||||
plt.show()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue