56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
import math
|
|
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--density", "-d")
|
|
|
|
args=parser.parse_args()
|
|
|
|
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
|
|
Kenergies = []
|
|
Genergies = []
|
|
energies = []
|
|
time = []
|
|
|
|
for i in range (1,401):
|
|
num = str(i).rjust(5, '0')
|
|
file = "BTs/"+str(args.density)+"/boom."+num+".bt"
|
|
data = pd.read_csv(file, sep=' ', names=columns)
|
|
data["X"] = data["X"]*1.5e8
|
|
data["Y"] = data["Y"]*1.5e8
|
|
data["Z"] = data["Z"]*1.5e8
|
|
data["X2"] = data["X"]**2
|
|
data["Y2"] = data["Y"]**2
|
|
data["Z2"] = data["Z"]**2
|
|
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
|
|
data["distance"] = data["distance2"]**0.5
|
|
data["vX"] = data["vX"]*29880
|
|
data["vY"] = data["vY"]*29880
|
|
data["vZ"] = data["vZ"]*29880
|
|
data["vX2"] = data["vX"]**2
|
|
data["vY2"] = data["vY"]**2
|
|
data["vZ2"] = data["vZ"]**2
|
|
data["Mass"] = data["Mass"]*1.989e30
|
|
data["vel2"] = data["X"]+data["Y"]+data["Z"]**2
|
|
data["vel"] = data["distance2"]**0.5
|
|
data["KE"] = 0.5*data["Mass"]*data["vel2"]
|
|
data["GPE"] = (6.67e-11*1.89e27*data["Mass"])/(data["distance"])
|
|
data["Energy"] = data["KE"]+data["GPE"]
|
|
energy = data["Energy"].sum()
|
|
energies.append(energy)
|
|
time.append(i)
|
|
KE = data["KE"].sum()
|
|
Kenergies.append(KE)
|
|
GPE = data["GPE"].sum()
|
|
Genergies.append(GPE)
|
|
|
|
ax=plt.axes()
|
|
# ax.set_yscale("log")
|
|
ax.plot(time, Kenergies, label="Kinetic")
|
|
ax.plot(time, Genergies, label="Gravitational")
|
|
ax.plot(time, energies, label="Total")
|
|
ax.legend()
|
|
plt.show()
|