experiment-t/distanceVdensity.py
2025-11-27 10:38:57 +00:00

52 lines
1.5 KiB
Python

import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
deviations = []
densities = [300,350,400,450,500,550,600,650,700]
breakupDistances = []
theoreticalDensities=np.linspace(300,700,num=100)
theoreticalDistances=[]
for i in theoreticalDensities:
distance=2.44*69911*(1330/i)**(1/3)
distance=distance
theoreticalDistances.append(distance)
for density in densities:
densityDeviations = []
time = []
distances = []
for i in range (25,270):
num = str(i).rjust(5, '0')
file = "BTs/High-Res-"+str(density)+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
data["X"] = data["X"]*1.5e8
data["Y"] = data["Y"]*1.5e8
data["Z"] = data["Z"]*1.5e8
data["X2"] = data["X"]**2
data["Y2"] = data["Y"]**2
data["Z2"] = data["Z"]**2
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
data["distance"] = data["distance2"]**0.5
deviation = data["distance"].std()
distance = data["distance"].mean()
time.append(i)
densityDeviations.append(deviation)
distances.append(distance)
for i in range(len(densityDeviations)):
if densityDeviations[i] > 0.75:
index = i
break
breakupDistances.append(distances[index])
ax=plt.axes()
plt.scatter(densities, breakupDistances)
ax.plot(theoreticalDensities, theoreticalDistances)
plt.show()