49 lines
1.5 KiB
Python
49 lines
1.5 KiB
Python
import math
|
|
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
|
|
deviations = []
|
|
distances = []
|
|
densities = ["300","350","400","450","500","550","600","650","700"]
|
|
breakUpDistances = []
|
|
|
|
for density in densities:
|
|
densityDeviations = []
|
|
time = []
|
|
for i in range (25,270):
|
|
num = str(i).rjust(5, '0')
|
|
file = "BTs/High-Res-"+density+"/boom."+num+".bt"
|
|
data = pd.read_csv(file, sep=' ', names=columns)
|
|
data["X"] = data["X"]*1.5e8
|
|
data["Y"] = data["Y"]*1.5e8
|
|
data["Z"] = data["Z"]*1.5e8
|
|
data["X2"] = data["X"]**2
|
|
data["Y2"] = data["Y"]**2
|
|
data["Z2"] = data["Z"]**2
|
|
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
|
|
data["distance"] = data["distance2"]**0.5
|
|
deviation = data["distance"].std()
|
|
distance = data["distance"].mean()
|
|
time.append(i)
|
|
densityDeviations.append(deviation)
|
|
distances.append(distance)
|
|
|
|
deviations.append(densityDeviations)
|
|
|
|
ax=plt.axes()
|
|
# ax.set_yscale("log")
|
|
ax.plot(time, deviations[0],label="300")
|
|
ax.plot(time, deviations[1],label="350")
|
|
ax.plot(time, deviations[2],label="400")
|
|
ax.plot(time, deviations[3],label="450")
|
|
ax.plot(time, deviations[4],label="500")
|
|
ax.plot(time, deviations[5],label="550")
|
|
ax.plot(time, deviations[6],label="600")
|
|
ax.plot(time, deviations[7],label="650")
|
|
ax.plot(time, deviations[8],label="700")
|
|
ax.legend()
|
|
plt.show()
|
|
|
|
|