import math import pandas as pd import numpy as np import matplotlib.pyplot as plt columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"] deviations = [] distances = [] densities = ["300","350","400","450","500","550","600","650","700"] breakUpDistances = [] for density in densities: densityDeviations = [] time = [] for i in range (25,270): num = str(i).rjust(5, '0') file = "BTs/High-Res-"+density+"/boom."+num+".bt" data = pd.read_csv(file, sep=' ', names=columns) data["X"] = data["X"]*1.5e8 data["Y"] = data["Y"]*1.5e8 data["Z"] = data["Z"]*1.5e8 data["X2"] = data["X"]**2 data["Y2"] = data["Y"]**2 data["Z2"] = data["Z"]**2 data["distance2"] = data["X2"]+data["Y2"]+data["Z2"] data["distance"] = data["distance2"]**0.5 deviation = data["distance"].std() distance = data["distance"].mean() time.append(i) densityDeviations.append(deviation) distances.append(distance) deviations.append(densityDeviations) ax=plt.axes() # ax.set_yscale("log") ax.plot(time, deviations[0],label="300") ax.plot(time, deviations[1],label="350") ax.plot(time, deviations[2],label="400") ax.plot(time, deviations[3],label="450") ax.plot(time, deviations[4],label="500") ax.plot(time, deviations[5],label="550") ax.plot(time, deviations[6],label="600") ax.plot(time, deviations[7],label="650") ax.plot(time, deviations[8],label="700") ax.legend() plt.show()