import math import pandas as pd import numpy as np import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser() parser.add_argument("--density", "-d") args=parser.parse_args() columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"] deviations = [] time = [] for i in range (1,401): num = str(i).rjust(5, '0') file = "BTs/"+args.density+"/boom."+num+".bt" data = pd.read_csv(file, sep=' ', names=columns) data["X"] = data["X"]*1.5e8 data["Y"] = data["Y"]*1.5e8 data["Z"] = data["Z"]*1.5e8 data["X2"] = data["X"]**2 data["Y2"] = data["Y"]**2 data["Z2"] = data["Z"]**2 data["distance2"] = data["X2"]+data["Y2"]+data["Z2"] data["distance"] = data["distance2"]**0.5 deviation = data["distance"].std() time.append(i) deviations.append(deviation) del time[-1] del time[-1] firstDeriv=np.diff(deviations) secondDeriv=np.diff(firstDeriv) ax=plt.axes() # ax.set_yscale("log") ax.plot(time, secondDeriv) plt.show()