import math import pandas as pd import numpy as np import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser() parser.add_argument("--density", "-d") args=parser.parse_args() columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"] distances = [] time = [] for i in range (1,401): num = str(i).rjust(5, '0') file = "BTs/"+str(args.density)+"/boom."+num+".bt" data = pd.read_csv(file, sep=' ', names=columns) xPosAU = data["X"].mean() xPos = xPosAU*1.5e8 yPosAU = data["Y"].mean() yPos = xPosAU*1.5e8 zPosAU = data["Z"].mean() zPos = xPosAU*1.5e8 distance = math.sqrt((xPos**2)+(yPos**2)+(zPos**2)) time.append(i) distances.append(distance) print(min(distances)) ax=plt.axes() # ax.set_yscale("log") ax.plot(time, distances) plt.show()