Initial commit

This commit is contained in:
Ceres 2025-11-20 14:37:57 +00:00
commit 8280a54dbf
Signed by: ceres-sees-all
GPG key ID: 9814758436430045
8 changed files with 294 additions and 0 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
BTs

35
distance.py Normal file
View file

@ -0,0 +1,35 @@
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--density", "-d")
args=parser.parse_args()
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
distances = []
time = []
for i in range (1,401):
num = str(i).rjust(5, '0')
file = "BTs/"+str(args.density)+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
xPosAU = data["X"].mean()
xPos = xPosAU*1.5e8
yPosAU = data["Y"].mean()
yPos = xPosAU*1.5e8
zPosAU = data["Z"].mean()
zPos = xPosAU*1.5e8
distance = math.sqrt((xPos**2)+(yPos**2)+(zPos**2))
time.append(i)
distances.append(distance)
print(min(distances))
ax=plt.axes()
# ax.set_yscale("log")
ax.plot(time, distances)
plt.show()

49
distanceVDensity.py Normal file
View file

@ -0,0 +1,49 @@
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
deviations = []
distances = []
time = []
densities = ["300","350","400","450","500","550","600","650","700"]
breakUpDistances = []
for density in densities:
for i in range (1,320):
num = str(i).rjust(5, '0')
file = "BTs/High-Res-"+density+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
data["X"] = data["X"]*1.5e8
data["Y"] = data["Y"]*1.5e8
data["Z"] = data["Z"]*1.5e8
data["X2"] = data["X"]**2
data["Y2"] = data["Y"]**2
data["Z2"] = data["Z"]**2
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
data["distance"] = data["distance2"]**0.5
deviation = data["distance"].std()
distance = data["distance"].mean()
time.append(i)
deviations.append(deviation)
distances.append(distance)
del time[-1]
del time[-1]
del distances[-1]
del distances[-1]
firstDeriv=np.diff(deviations)
secondDeriv=np.diff(firstDeriv)
max_index=np.argmax(secondDeriv)
print(distances[max_index])
breakUpDistances.append(distances[max_index])
ax=plt.axes()
# ax.set_yscale("log")
ax.plot(densities, breakUpDistances)
plt.show()

53
energy.py Normal file
View file

@ -0,0 +1,53 @@
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--density", "-d")
args=parser.parse_args()
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
Kenergies = []
Genergies = []
time = []
for i in range (1,401):
num = str(i).rjust(5, '0')
file = "BTs/"+str(args.density)+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
data["X"] = data["X"]*1.5e8
data["Y"] = data["Y"]*1.5e8
data["Z"] = data["Z"]*1.5e8
data["X2"] = data["X"]**2
data["Y2"] = data["Y"]**2
data["Z2"] = data["Z"]**2
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
data["distance"] = data["distance2"]**0.5
data["vX"] = data["vX"]*29880
data["vY"] = data["vY"]*29880
data["vZ"] = data["vZ"]*29880
data["vX2"] = data["vX"]**2
data["vY2"] = data["vY"]**2
data["vZ2"] = data["vZ"]**2
data["Mass"] = data["Mass"]*1.989e30
data["vel2"] = data["X"]+data["Y"]+data["Z"]**2
data["vel"] = data["distance2"]**0.5
data["KE"] = 0.5*data["Mass"]*data["vel2"]
data["GPE"] = (6.67e-11*1.89e27*data["Mass"])/(data["distance"])
# data["Energy"] = data["KE"]+data["GPE"]
# energy = data["Energy"].sum()
time.append(i)
KE = data["KE"].sum()
Kenergies.append(KE)
GPE = data["GPE"].sum()
Genergies.append(GPE)
ax=plt.axes()
# ax.set_yscale("log")
ax.plot(time, Kenergies, label="Kinetic")
ax.plot(time, Genergies, label="Gravitational")
ax.legend()
plt.show()

30
getDistance.py Normal file
View file

@ -0,0 +1,30 @@
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--density", "-d")
parser.add_argument("--frame", "-f")
args=parser.parse_args()
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
num = str(args.frame).rjust(5, '0')
file = "BTs/"+str(args.density)+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
data["X"] = data["X"]*1.5e8
data["Y"] = data["Y"]*1.5e8
data["Z"] = data["Z"]*1.5e8
data["X2"] = data["X"]**2
data["Y2"] = data["Y"]**2
data["Z2"] = data["Z"]**2
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
data["distance"] = data["distance2"]**0.5
distance = data["distance"].mean()
print(distance)

51
position.py Normal file
View file

@ -0,0 +1,51 @@
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--density", "-d")
args=parser.parse_args()
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
xposs = []
yposs = []
zposs = []
for i in range (1,401):
num = str(i).rjust(5, '0')
file = "BTs/"+str(args.density)+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
data["X"] = data["X"]*1.5e8
data["Y"] = data["Y"]*1.5e8
data["Z"] = data["Z"]*1.5e8
xpos = data["X"].mean()
ypos = data["Y"].mean()
zpos = data["Z"].mean()
xposs.append(xpos)
yposs.append(ypos)
zposs.append(zpos)
theta = np.linspace(0, 2 * np.pi, 100)
phi = np.linspace(0, np.pi, 50)
theta, phi = np.meshgrid(theta, phi)
r = 69911
x = r * np.sin(phi) * np.cos(theta)
y = r * np.sin(phi) * np.sin(theta)
z = r * np.cos(phi)
ax=plt.axes(projection='3d')
ax.set_box_aspect([1, 1, 1])
max_range = 0.5*np.max([np.max(np.abs(xposs)), np.max(np.abs(yposs)), np.max(np.abs(zposs))])
ax.set_xlim(-max_range, max_range)
ax.set_ylim(-max_range, max_range)
ax.set_zlim(-max_range, max_range)
ax.plot(xposs, yposs, zposs)
ax.plot_surface(x, y, z, alpha=0.3)
plt.show()

35
seperation.py Normal file
View file

@ -0,0 +1,35 @@
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--density", "-d")
args=parser.parse_args()
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
deviations = []
time = []
for i in range (1,401):
num = str(i).rjust(5, '0')
file = "BTs/"+str(args.density)+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
data["X"] = data["X"]*1.5e8
data["Y"] = data["Y"]*1.5e8
data["Z"] = data["Z"]*1.5e8
data["X2"] = data["X"]**2
data["Y2"] = data["Y"]**2
data["Z2"] = data["Z"]**2
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
data["distance"] = data["distance2"]**0.5
deviation = data["distance"].std()
time.append(i)
deviations.append(deviation)
ax=plt.axes()
# ax.set_yscale("log")
ax.plot(time, deviations)
plt.show()

40
seperationDerivative.py Normal file
View file

@ -0,0 +1,40 @@
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--density", "-d")
args=parser.parse_args()
columns = ["ID", "idx", "Mass", "Radius", "X", "Y", "Z", "vX", "vY", "vZ", "sX", "sY", "sZ", "Colour"]
deviations = []
time = []
for i in range (1,401):
num = str(i).rjust(5, '0')
file = "BTs/"+args.density+"/boom."+num+".bt"
data = pd.read_csv(file, sep=' ', names=columns)
data["X"] = data["X"]*1.5e8
data["Y"] = data["Y"]*1.5e8
data["Z"] = data["Z"]*1.5e8
data["X2"] = data["X"]**2
data["Y2"] = data["Y"]**2
data["Z2"] = data["Z"]**2
data["distance2"] = data["X2"]+data["Y2"]+data["Z2"]
data["distance"] = data["distance2"]**0.5
deviation = data["distance"].std()
time.append(i)
deviations.append(deviation)
del time[-1]
del time[-1]
firstDeriv=np.diff(deviations)
secondDeriv=np.diff(firstDeriv)
ax=plt.axes()
# ax.set_yscale("log")
ax.plot(time, secondDeriv)
plt.show()