148 lines
No EOL
5 KiB
Python
148 lines
No EOL
5 KiB
Python
from math import *
|
|
import numpy as np
|
|
from scipy.integrate import solve_ivp
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
def part1(velocityFactor, orbits):
|
|
#Part one Diffeq
|
|
def f_part1(t, state, Me, Mm, G):
|
|
xm, ym, vx, vy = state #all input values
|
|
|
|
dxmdt = vx #functions for each diffeq
|
|
dymdt = vy
|
|
dvxdt = -(Me*G*xm)/((xm**2+ym**2)**(3/2))
|
|
dvydt = -(Me*G*ym)/((xm**2+ym**2)**(3/2))
|
|
|
|
|
|
return (dxmdt, dymdt, dvxdt, dvydt) #return differentiated values
|
|
|
|
|
|
# Initial Conditions
|
|
Me = 5.97*(10**24) #Constants
|
|
Mm = 7.35*(10**22)
|
|
G = 6.67*(10**-11)
|
|
|
|
t_min = 0
|
|
t_max = 2360620*int(orbits) #Time for one orbit * number of orbits
|
|
numpoints = 2000*int(orbits) #To keep good clarity when plotting
|
|
t = np.linspace(t_min, t_max, numpoints)
|
|
|
|
r = 384400000 #Distance or orbit
|
|
v = sqrt((G*Me)/r)*float(velocityFactor)#Balancing centrepetal force and gravitational force,
|
|
#then multiplying by a scalar to obtain an elliptical orbit
|
|
|
|
xm0 = r #Initial position and velocity of moon
|
|
ym0 = 0 #Set so moon is travelling only in the y direction initially
|
|
vx0 = 0
|
|
vy0 = v
|
|
|
|
rtol = 1e-5 #Tolerences set to balance computation speed with accuracy
|
|
atol = 1e-8
|
|
|
|
|
|
#Solver
|
|
results = solve_ivp(f_part1, (t_min,t_max), (xm0, ym0, vx0, vy0), args=(Me, Mm, G), t_eval=t, atol=atol, rtol=rtol)
|
|
|
|
|
|
#Graph plotting
|
|
ax=plt.axes() # This creates some axes, so that we
|
|
ax.set_aspect(1) # can set the aspect ratio to 1 i.e.
|
|
# x and y axes are scaled equally.
|
|
ax.set_xlabel("x coordinate (m)") # Must label axes (with
|
|
ax.set_ylabel("y coordinate (m)") # units) and give
|
|
ax.set_title("Orbit of moon around earth") # plot title.
|
|
#
|
|
ax.plot(results.y[0],results.y[1]) # Make the plot
|
|
ax.plot(0,0)
|
|
ax.legend(['Moon']) # and add a key.
|
|
ax.axhline(y=0, color='k', linewidth=0.5)
|
|
ax.axvline(x=0, color='k', linewidth=0.5)
|
|
plt.show()
|
|
|
|
def part2(velocityFactor, orbits):
|
|
#Part two Diffeq
|
|
def f_part2(t, state, Me, Mm, G):
|
|
xm, ym, vx, vy, xp, yp, vpx, vpy = state #all input values
|
|
|
|
xpm = xp-xm
|
|
ypm = yp-ym
|
|
|
|
dxmdt = vx #moon diffeqs
|
|
dymdt = vy
|
|
dvxdt = -(Me*G*xm)/((xm**2+ym**2)**(3/2))
|
|
dvydt = -(Me*G*ym)/((xm**2+ym**2)**(3/2))
|
|
|
|
dxpdt = vpx #probe diffeqs
|
|
dypdt = vpy
|
|
dvpxdt = -((Me*G*xp)/((xp**2+yp**2)**(3/2)))-((Mm*G*xpm)/((xpm**2+ypm**2)**(3/2)))
|
|
dvpydt = -((Me*G*yp)/((xp**2+yp**2)**(3/2)))-((Mm*G*ypm)/((xpm**2+ypm**2)**(3/2)))
|
|
|
|
return (dxmdt, dymdt, dvxdt, dvydt, dxpdt, dypdt, dvpxdt, dvpydt)
|
|
|
|
|
|
# Initial Conditions
|
|
Me = 5.97*(10**24)
|
|
Mm = 7.35*(10**22)
|
|
G = 6.67*(10**-11)
|
|
|
|
t_min = 0
|
|
t_max = 2360620*int(orbits)
|
|
numpoints = 2000*int(orbits)
|
|
t = np.linspace(t_min, t_max, numpoints)
|
|
|
|
rm = 384400000
|
|
vm = sqrt((G*Me)/rm)*float(velocityFactor)
|
|
|
|
rpm = 10000000
|
|
vpm = sqrt((G*Mm)/rpm)
|
|
|
|
xm0 = rm
|
|
ym0 = 0
|
|
vx0 = 0
|
|
vy0 = vm
|
|
|
|
xp0 = rpm+rm #as position is relative to the earth
|
|
yp0 = 0 #not to the moon
|
|
vpx0 = 0
|
|
vpy0 = vm+vpm
|
|
|
|
rtol = 1e-6
|
|
atol = 1e-9
|
|
|
|
#Solver
|
|
results = solve_ivp(f_part2, (t_min,t_max), (xm0, ym0, vx0, vy0, xp0, yp0, vpx0, vpy0), args=(Me, Mm, G), t_eval=t, atol=atol, rtol=rtol)
|
|
|
|
|
|
#Graph plotting
|
|
ax=plt.axes() # This creates some axes, so that we
|
|
ax.set_aspect(1) # can set the aspect ratio to 1 i.e.
|
|
# x and y axes are scaled equally.
|
|
ax.set_xlabel("x coordinate (m)") # Must label axes (with
|
|
ax.set_ylabel("y coordinate (m)") # units) and give
|
|
ax.set_title("Orbit of moon around earth") # plot title.
|
|
ax.plot(results.y[0],results.y[1], label="Moon" ) # Make the plot
|
|
ax.plot(results.y[4],results.y[5], label="Probe")
|
|
ax.legend(loc='upper right') # and add a key.
|
|
ax.axhline(y=0, color='k', linewidth=0.5)
|
|
ax.axvline(x=0, color='k', linewidth=0.5)
|
|
plt.show()
|
|
|
|
|
|
MyInput = '0'
|
|
while MyInput != 'q':
|
|
MyInput = input('Enter a choice, "1", "2" or "q" to quit: ')
|
|
print('You entered the choice: ',MyInput)
|
|
if MyInput == '1':
|
|
print('You have chosen part (1): simulation of a lunar orbit')
|
|
velocityFactor = input(f'Enter the velocity scalar. A value of 1 will result in a circular orbit, and anything else will give an elliptical orbit: ')
|
|
orbits = input(f'Enter the approximate number of orbits desired: ')
|
|
part1(velocityFactor, orbits)
|
|
elif MyInput == '2':
|
|
print('You have chosen part (2): earth-moon-probe system')
|
|
velocityFactor = input(f'Enter the velocity scalar. A value of 1 will result in a circular orbit, and anything else will give an elliptical orbit: ')
|
|
orbits = input(f'Enter the approximate number of orbits desired: ')
|
|
part2(velocityFactor, orbits)
|
|
elif MyInput != 'q':
|
|
print('This is not a valid choice')
|
|
print('You have chosen to finish - goodbye.') |