Uni-Computing/Exercise 1/exercise1.py
2025-10-14 21:16:03 +01:00

147 lines
No EOL
4.4 KiB
Python

from math import *
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
def part1(radFactor, orbits):
#Part one Diffeq
def f_part1(t, state, Me, Mm, G):
xm, ym, vx, vy = state
dxmdt = vx
dymdt = vy
dvxdt = -(Me*G*xm)/((xm**2+ym**2)**(3/2))
dvydt = -(Me*G*ym)/((xm**2+ym**2)**(3/2))
return (dxmdt, dymdt, dvxdt, dvydt)
# Initial Conditions
Me = 5.97*(10**24)
Mm = 7.35*(10**22)
G = 6.67*(10**-11)
t_min = 0
t_max = 2360620*int(orbits)
numpoints = 2000*int(orbits)
t = np.linspace(t_min, t_max, numpoints)
r = 384400000
v = sqrt((G*Me)/r)*float(radFactor)
xm0 = r
ym0 = 0
vx0 = 0
vy0 = v
rtol = 1e-5
atol = 1e-8
#Solver
results = solve_ivp(f_part1, (t_min,t_max), (xm0, ym0, vx0, vy0), args=(Me, Mm, G), t_eval=t, atol=atol, rtol=rtol)
#Graph plotting
ax=plt.axes() # This creates some axes, so that we
ax.set_aspect(1) # can set the aspect ratio to 1 i.e.
# x and y axes are scaled equally.
ax.set_xlabel("x coordinate (m)") # Must label axes (with
ax.set_ylabel("y coordinate (m)") # units) and give
ax.set_title("Orbit of moon around earth") # plot title.
#
ax.plot(results.y[0],results.y[1]) # Make the plot
ax.plot(0,0)
ax.legend(['Moon']) # and add a key.
ax.axhline(y=0, color='k', linewidth=0.5)
ax.axvline(x=0, color='k', linewidth=0.5)
plt.show()
def part2(radFactor, orbits):
#Part one Diffeq
def f_part1(t, state, Me, Mm, G):
xm, ym, vx, vy, xp, yp, vpx, vpy = state
xpm = xp-xm
ypm = yp-ym
dxmdt = vx
dymdt = vy
dvxdt = -(Me*G*xm)/((xm**2+ym**2)**(3/2))
dvydt = -(Me*G*ym)/((xm**2+ym**2)**(3/2))
dxpdt = vpx
dypdt = vpy
dvpxdt = -((Me*G*xp)/((xp**2+yp**2)**(3/2)))-((Mm*G*xpm)/((xpm**2+ypm**2)**(3/2)))
dvpydt = -((Me*G*yp)/((xp**2+yp**2)**(3/2)))-((Mm*G*ypm)/((xpm**2+ypm**2)**(3/2)))
return (dxmdt, dymdt, dvxdt, dvydt, dxpdt, dypdt, dvpxdt, dvpydt)
# Initial Conditions
Me = 5.97*(10**24)
Mm = 7.35*(10**22)
G = 6.67*(10**-11)
t_min = 0
t_max = 2360620*int(orbits)
numpoints = 2000*int(orbits)
t = np.linspace(t_min, t_max, numpoints)
rm = 384400000
vm = sqrt((G*Me)/rm)*float(radFactor)
rpm = 10000000
vpm = sqrt((G*Mm)/rpm)
xm0 = rm
ym0 = 0
vx0 = 0
vy0 = vm
xp0 = rpm+rm
yp0 = 0
vpx0 = 0
vpy0 = vm+vpm
rtol = 1e-6
atol = 1e-9
#Solver
results = solve_ivp(f_part1, (t_min,t_max), (xm0, ym0, vx0, vy0, xp0, yp0, vpx0, vpy0), args=(Me, Mm, G), t_eval=t, atol=atol, rtol=rtol)
#Graph plotting
ax=plt.axes() # This creates some axes, so that we
ax.set_aspect(1) # can set the aspect ratio to 1 i.e.
# x and y axes are scaled equally.
ax.set_xlabel("x coordinate (m)") # Must label axes (with
ax.set_ylabel("y coordinate (m)") # units) and give
ax.set_title("Orbit of moon around earth") # plot title.
ax.plot(results.y[0],results.y[1], label="Moon" ) # Make the plot
ax.plot(results.y[4],results.y[5], label="Probe")
ax.legend(loc='upper right') # and add a key.
ax.axhline(y=0, color='k', linewidth=0.5)
ax.axvline(x=0, color='k', linewidth=0.5)
plt.show()
MyInput = '0'
while MyInput != 'q':
MyInput = input('Enter a choice, "1", "2" or "q" to quit: ')
print('You entered the choice: ',MyInput)
if MyInput == '1':
print('You have chosen part (1): simulation of a lunar orbit')
radFactor = input(f'Enter the velocity scalar. A value of 1 will result in a circular orbit, and anything else will give an elliptical orbit: ')
orbits = input(f'Enter the approximate number of orbits desired: ')
part1(radFactor, orbits)
elif MyInput == '2':
print('You have chosen part (2): earth-moon-probe system')
radFactor = input(f'Enter the velocity scalar. A value of 1 will result in a circular orbit, and anything else will give an elliptical orbit: ')
orbits = input(f'Enter the approximate number of orbits desired: ')
part2(radFactor, orbits)
elif MyInput != 'q':
print('This is not a valid choice')
print('You have chosen to finish - goodbye.')