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Abstract

This exercise aimed to use numerical integration methods to investigate diffraction of light through an aperture
onto a screen. Two calculation methods were used, a numerical calculation and Monte Carlo integration. The
numerical method gave cleaner, less ‘noisy’ data, but the Monte Carlo method was considerably quicker.

1 Introduction

In this exersise we will use numerical methods to investigate the diffraction of light when passed through an aperture
of different shapes. We will use two methods, first pure numerical integration methods, and then the Monte Carlo
method, and compare the accuraccy and speed of these two methods. We will first create a 1 dimensional plot of
the diffraction to ensure the results are as expected, and then 2 dimensional plots, using both square and curcular
apertures.

2 Theory and Methods

To calculate the diffraction pattern of light passing through a single aperture, we will use the Fresnel diffraction
integral, given by:
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To allow for this to be calculated computtionally, we will simplify it, integrating over the area of the aperture, and
seperating out the real and imaginary parts of the equation:
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3 Explanation of Code

Initially, the functions for the kernels of the real and imaginary parts of equation [2] are set up, as well as setting
some universal constants:

def Fresnel2dreal(yp, xp, ¥y, X, k, z): #Define functions for integral kernels
kernel = np.cos((k/(2*z))*((x-xp)**2+(y-yp) **2))
return kernel

def Fresnel2dimag(yp, xp, y, X, k, 2z):
kernel = np.sin((k/(2%z))* ((x—xp)**2+(y-yp) **2))



return kernel

c = 3e8 #Universal constants
e0 = 8.8be-12

A function for part 1 is then defined:

def plotiD(aperture, z, k, screen_range, resolution): #Function for part 1
def genData(aperture, z, k, screen_range, resolution): #Function to generate data
y = 0 #As in 1D

xpl=ypl=-aperture/2 #Set range over which we are integrating
xp2=yp2=aperture/2

xs = np.linspace(-screen_range/2, screen_range/2, num=resolution) #Generate values to
calculate for
intensities = []

constant = k/2*np.pi*z #Relative intensity constant

for x in tqdm(xs): #Loop through all values of x
realpart, realerror = integrate.dblquad(Fresnel2dreal, xpl, xp2, ypl, yp2, args=(y, x,
k, z), epsabs=1e-10, epsrel=1e-10) #Calculate both real and imaginary parts
imagpart, imagerror = integrate.dblquad(Fresnel2dimag, xpl, xp2, ypl, yp2, args=(y, x,
k, z), epsabs=1e-10, epsrel=1e-10)

I = c*e0*((realpart*constant)**2+(imagpart*constant)*#*2) #Combine parts and constants to
get intensity
intensities.append(I) #Add calculated intensity to list
return xs, intensities

ax = plt.axes()

xs, intensities = genData(aperture, z, k, screen_range, resolution) #Plot intensity against
distance

ax.plot(xs, intensities)

plt.xlabel("Position (m)")

plt.ylabel("Relative Intensity")

plt.title("1D diffraction")

plt.show()

A sub function is defined with inputs of aperture, z, k screen range and resolution, to generate the data to plot.
It begins by setting y=0 as it generates a 1D plot, and then setting the limits of the integration, defined by the
aperture. An array of x values is then created, and these are the positions on the screen which we will calculate the
integral for. The function then iterates through this array, and for each value of x it uses the dblquad function to
calculate the real and imaginary part of the integral for the given x value. It then takes these results and combines
them with the universal constants to give the intensity at that point, and then appends this value to a list of
intensities. This genData function is then called and the data is saved to a variable, and the data is then plotted,
creating a graph of intensity against position.
The function for part 2 is then defined:

def plot2Drectangular(aperture, z, k, screen_range, resolution): #Function for part 2
def genData(aperture, z, k, screen_range, resolution): #Function to generate data
xpl=ypl=-aperture/2 #Set integration limits
xp2=yp2=aperture/2



xs = np.linspace(-screen_range/2, screen_range/2, num=resolution) #Generate values to
integrate for
ys = np.linspace(-screen_range/2, screen_range/2, num=resolution)

intensities = []

constant = k/2#np.pi*z #Relative intensity constant
completion = 0O

for y in tqdm(ys):
xIntensities = []
for x in xs:
realpart, realerror = integrate.dblquad(Fresnel2dreal, xpl, xp2, ypl, yp2, args=(y,
x, k, z), epsabs=1e-10, epsrel=le-10)#Calculate both parts
imagpart, imagerror = integrate.dblquad(Fresnel2dimag, xpl, xp2, ypl, yp2, args=(y,
x, k, z), epsabs=1le-10, epsrel=1e-10)

I = c*xe0*((realpart*constant)**2+(imagpart*constant)**2)#Combine both parts and
constants
xIntensities.append(I)
intensities.append(xIntensities)
intensities = np.array(intensities)
return intensities

intensity = genData(aperture, z, k, screen_range, resolution) #Generate the data
extents = (-screen_range/2,screen_range/2,-screen_range/2,screen_range/2) #Set limits of the
plot

plt.imshow(intensity,vmin=0.0,vmax=1.0*intensity.max(),extent=extents,\
origin="lower",cmap="nipy_spectral_r") #Plot the graphs

plt.colorbar()

plt.xlabel("X Position (m)")

plt.ylabel("Y Position (m)")

plt.title("2D diffraction with a rectangular aperture")

plt.show()

The function for the second part is quite similar to the first part. Again, a function to generate the data is defined.
It sets the linits for the integration, and this time generates an array of values for both x and y. It then loops
through both the y and x lists, with the x loop nested inside the y loop. Each iteration it calculates the integral for
the current location, and adds it to a 2D array representing the positions on the screen. Each row of pixels is a list,
and the 2D array is a list of these rows. The genData function is then called and its result is saved to intensities,
and the extents of the 2D plot are set to the size of the screen. The plot is then generated, with the scale set to be

from 0 to the maximum value in the intensities array.

The function for part 3 is then defined:

def plot2Dcircular(aperture, z, k, screen_range, resolution): #Function for part 3

def genData(aperture, z, k, screen_range, resolution):
xpl=-aperture/2 #Set integration limits
xp2=aperture/2

def yplfunc(xp):
return -np.sqrt((aperture/2)**2-(xp**2)) #Define y limits in terms of x

def yp2func(xp):
return np.sqrt((aperture/2)*x*2-(xp**2))



xs = np.linspace(-screen_range/2, screen_range/2, num=resolution) #Generate values to
integrate for
ys = np.linspace(-screen_range/2, screen_range/2, num=resolution)

intensities = []
constant = k/2*np.pi*z

for y in tqdm(ys):
xIntensities = []
for x in xs:
realpart, realerror = integrate.dblquad(Fresnel2dreal, xpl, xp2, yplfunc, yp2func,
args=(y, x, k, z), epsabs=1e-10, epsrel=1e-10) #Calculate functions using
circular limits
imagpart, imagerror = integrate.dblquad(Fresnel2dimag, xpl, xp2, yplfunc, yp2func,
args=(y, x, k, z), epsabs=1e-10, epsrel=1e-10)

I = cxe0*((realpart*constant)**2+(imagpart*constant)**2)
xIntensities.append(I)
intensities.append(xIntensities)
intensities = np.array(intensities)
return intensities

genData(aperture, z, k, screen_range, resolution)

intensity =
= (-screen_range/2,screen_range/2,-screen_range/2,screen_range/2)

extents

plt.imshow(intensity,vmin=0.0,vmax=1.0*intensity.max () ,extent=extents,\
origin="lower",cmap="nipy_spectral_r")

plt.colorbar()

plt.xlabel("X Position (m)")

plt.ylabel("Y Position (m)")

plt.title("2D diffraction with a circular aperture")

plt.show()

This operates very similarly to the part 2 function. The only difference is the addition of the yplfunction and
yp2function. These define the y prime limits of the integral in terms of the x prime value, and these are passed to
the dblquad functions in order to calculate the integrals using a circular aperture. The function for part 4 is then
defined:

def monte(aperture, z, k, screen_range, resolution, samples): #Function for part 4
N = samples #Number of samples

def doubleInteg(x, y, xp, yp, z, k, aperture): #Function to return calculated values for each
sample
values = []
for i in range(len(xp)):
if (xp[i]**2+yp[i]**2) > (aperture/2)*x2: #Check if point is in the aperture
values.append(0)
else:
value = np.exp(((1j*k)/(2*z))*((x-xp[i])**2+(y-yp[i])**2)) #Calculate value if in
aperture
values.append(value.imag)
return np.array(values)

def monteCarlo(x, y, 2, Kk, aperture): #Perform onte carlo method



xp = np.random.uniform(low=(-aperture/2), high=aperture/2, size=N) #Generate random samples
yp = np.random.uniform(low=(-aperture/2), high=aperture/2, size=N)

values = doubleInteg(x, y, Xp, yp, Z, k , aperture) #Calculate value for each pair of samples
mean = values.sum()/N

meansq = (values*values).sum()/N

integral = aperturex*mean #Calculate the integral end error

error = aperture*np.sqrt((meansq-meanx*mean)/N)

return integral, error

def genData(aperture, z, k, resolution, screen_range): #Function to generate the data

xs = np.linspace(-screen_range/2, screen_range/2, num=resolution) #Generate values to
integrate for
ys = np.linspace(-screen_range/2, screen_range/2, num=resolution)

intensities = []
constant = k/(2%np.pi*z)

for y in tqdm(ys):
xIntensities = []
for x in tqdm(xs):
integral, error = monteCarlo(x, v, Z, Kk, aperture) #Find integral vaule using monte
carlo method
I = cxeOxconstant*integral
xIntensities.append(I)
intensities.append(xIntensities)
intensities = np.array(intensities)
return intensities

genData(aperture, z, k, resolution, screen_range) #Generate data

intensity =
= (-screen_range/2,screen_range/2,-screen_range/2,screen_range/2)

extents

for y in range(len(intensity)):
for x in range(len(intensityl[y])):
if intensityly] [x] < 0.05*intensity.max():
intensity[y]l [x] = 0

plt.imshow(intensity,vmin=0,vmax=1.0*intensity.max(),extent=extents,\
origin="lower",cmap="nipy_spectral_r")

plt.colorbar()

plt.xlabel("X Position (m)")

plt.ylabel("Y Position (m)")

plt.title("2D diffraction through Monte Carlo")

plt.show()

The function doublelnteg is defined. This takes values of x, y, z, k and aperture, as well as a list of random samples
of xp and yp. For each value pair of xp and yp, it test if the coordinate is in the circular aperture. If it is, the kernel
function is calculated and appended to the array of values, and of the coordinate is outside of the aperture, the
value is said to be 0 and this is appended to the list of values. The monteCarlo function is then defined. This first
generates N random samples of xp and yp in two arrays. It then calls the doublelnteg function, passing these arrays
of samples as well as the other needed values, and saves the resulting list of values to the values variable. From
this list of values, it calculates both the mean and mean squared, and uses these to calculate an approximation of
the integral, as well as the error associated with this integral, and returns both. As with the previous sections, the
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Figure 1: 1D Far-field diffraction

genData function is the defined, first creating arrays of x and y values, then looping through these arrays. This
time however, instead of using the dblquad function it uses the monteCarlo function to calculate the integral, then
calculates the intensity from this. Again, it saves each value to a 2D array, and returns this array. The genData
function is then called and the array is saved to intensity, and the plot extents are set. As the Monte Carlo method
generates a lot of low-level noise, the intensity is then looped through and all values less than 5% of the maximum
are set to 0. While this may remove some actual data, it greatly increases the signal to noise ration, allowing for
the diffraction pattern to be observed more easily. The data is then plotted in the same manner as parts 2 and 3.

4 Results and Discussion

Throughout these results a wavelength of 1e-6m will be used. For far field diffraction, an aperture of 2e-5m and a
z of 0.05m will be used, and for near field diffraction an aperture of 2e-4 and a z of 0.005m will be used.

4.1 Section 1: 1D diffraction

The 1D diffraction performs very well for far field diffraction, giving a graph in the expected shape, as shown in
figure [I] For near field diffraction, initially the plot was very noisy, with many spikes as shown in figure[2l To correct
for this, the epsabs and epsrel arguments to le-10, which produced the correct diffraction pattern, as shown in

figure 3]
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4.2 Section 2: 2D diffraction with a square aperture

Section 2 of the code also behaves as expected. It begins to become quite time intensive at high resolutions due to
the large number of integrations needed to be calculated. It produces the expected pattern for both near and far
feild diffraction, as shown in figures[4] and 5| As the near field diffraction takes longer to compute than the far field,
the near field plot was generated using a lower resolution of 100x100, whereas the far field plot was 400x400.

4.3 Section 3: 2D diffraction with a circular aperture

Again, section 3 gave the expected results, as shown in figures [6] and [7] however for this section the near field
diffraction took much longer to compute than the far field, so again it was performed at a lower resolution.

4.4 Section 4: 2D diffraction through Monte Carlo

The Monte Carlo method computed much faster than the numerical integration. At low resolutions and a low
number of samples, a weak pattern was observed in the centre of the plot, but the rest of the data was effectively
just noise, as shown in figure[8 While this is very quick to compute, it is very hard to draw any data from it. When
given a low resolution of 50x50 pixels, but a high sample rate of 5000 samples, the plot was still preduced quite
quickly, but now showed a strong pattern, shown in figure [9] although with this low resolution it is still hard to
confirm the accuraccy of the pattern. For a plot with a high resolution of 500500 and 10 samples per pixel, the
pattern was more distinguishable than the low resolution plot, but outside the middle of the plot the data quickly
became noise and it is hard to make out any pattern, as shown in figure [10] For a plot with both a high resolution
of 600x600 pixels and a high number of samples, 1000, a clear pattern is created, show in fgure [11} although this
takes much longer to compute than the previous plots. This plot also contains regular circular patterns not present
in the numerical integrations. When compared with the numerical method, the MonteCarlo method shows the
same pattern, although with more noise present and some irregularities. Unlike the previous sections, the near field
pattern does not take much longer than the far field, likely as the dblquad function tests for convergence, which
takes longer with the integrations present in the nearfield situation, however this is not the case for the Monte Carlo
method, so the near field situation takes aproximately the same time as the far firld situation. When using a high
resolution of 400x400 pixels and a high number of scamples of 1000, the Monte Carlo method also produces a
clear pattern for the near field situation, shown in figure [12| and again this matches the pattern produced by the
numerical integration

4.5 Section 5: Time for data generation

To compare the efficiency of the numerical method and the Monte Carlo method, plots were generated for a number
of different resolutions using the numerical method and the Monte Carlo method at a nu,ber of different sample
rates. A plot of time against resolution was then created. As the number of integrations performed is proportional
to resolution?, we would expect the time taken to also be proportional to resolution®. As such, time was plotted
against resolution? to produce straight lines, shown in figure . As expected, each line follows a very strong linear
relationship, showing that time is indeed proportional to resolution?. Additionally, we can see that the samples
needed for the Monte Carlo method to match the numerical method in efficiency is approximately 1600, however
even at theis number of samples the Monte Carlo method still gives less clear data than the numerical method. As
such, to balance if the accuracy of a Monte Carlo plot with samples < 1600 is enough, the Monte Carlo method
should be used as it is much faster, but if a greater accuracy is needed, the numerical method should be used.

5 Conclusion

All numerical methods gave the expected results, hadeling both near and far field diffraction, however at higher
resolutions the 2 dimensional plots began to take a large amount of time to compute. Using the Monte carlo method,
if either the resolution of number of samples was too low, the produced plot gave little useful data, however with
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sufficiently large resolution and number of samples, it gave a good plot whilst still being more efficient than the
numerical method.
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