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Abstract

The aim of this exercise was to use computational meth-
ods to model the gravitational interactions between the
earth, the moon, and a lunar probe orbiting the moon.
The model provided accurate results when provided with
realistic starting conditions, and when the starting con-
ditions were changed, the model responded as expected.

1 Introduction

In this exercise we will create a computational model to
first simulate the orbit of the moon around the earth,
and then the orbit of a lunar probe around the moon as
well. Using these simulations, we will first use realistic
starting conditions to verify that the simulations behave
as expected, i.e. they behave how these objects do in
real life. We will then alter these starting conditions
and observe how these alterations affect the simulations
result.

2 Theory and Methods

Our models will simply use Newton's equation for grav-
itational attraction,

GMm
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Combined with Newton's second law of motion,
F=ma

to find the acceleration of the objects. For the moon'’s
orbit around the earth, we find that

where M, is the mass of the earth, M, is the mass of
the moon, G is the gravitational constant, and r,, =
(Zm,Ym), the coordinates of the moon relative to the
fixed origin at the centre of the earth. We will assume

that the mass of the moon is negligible compared to that
of the earth, and therefore the motion of the earth can
be ignored, hence the fixed origin at its centre. From
this, we can obtain the following differential equations:
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This can then be extended to model the probe orbiting
the moon as well. It feels attraction from both the moon
and the earth, so needs terms for both:
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where 1, is the position of the probe relative to the earth,
and 7py, = 7p—"p, is the position of the probe relative to
the moon. These will then be solved in python using the
scipy.integrate.solve_ivp () method, after being supplied
with initial condition for velocity and position.



3 Explanation of Code

3.1 Orbit of the Moon

det partl{vel

eturn (dxmdt, dymdt, dvxd

The function for part 1 takes 2 inputs, velocityFactor
and orbits. These are scalar multipliers for the initial ve-
locity and max time respectively, which can be altered as
desired. The function for the derivatives is then defined,
taking an input of time, the initial state, the masses of
each object and the gravitaional constant. State is pro-
vided as a tuple with 4 objects, and each value in it is
then assigned to xm, ym, vx and vy. The equations for
the derivative of each of these values, relating to the
equations outlined in equation [I] are then defined, and
are returned in the same order they were initially given.

The initial starting conditions of the system are then

defined. M., M,,, G and r are all known and fixed
quantities. The standard value for v, the initial velocity
of the moon, is set by balancing centripetal force with
gravitational force to produce a stable, circular orbit,
however it can be changed by altering velocityFactor in
order to produce an elliptical orbit. t_-max is set to the
sidereal period of the moon multiplied by the number of
orbits desired. The position and velocity are then split
up into x and y values, and the simplest case is taken,
with the moon starting on the x axis and moving directly
upwards, allowing us to set ¥, and v, to 0, and z,,
and vy, to 7 and v respectively.

The solve_ivp() function is then called to solve the dif-
ferential equations. The initial conditions are provided
as a tuple, in the order defined in the differential equa-
tions function. The time range is also provided as a tu-
ple, and the other arguments needed for the differential
equations function are provided using args=. Matplotlib
is then used to create a plot of the position of the moon
at each time defined in t. x and y axes are then added
for clarity.

3.2 Lunar Probe

The initial configuration for section 2 is very similar to
that of section 1. The function for the section also takes
velocityFactor and orbits as inputs, which perform the
same function as in section 1. The differential equations
function has a similar form to the one in section 1, taking
time, state and some constants as input. The differential
equations that govern the movement of the moon and
their associated state values are the same, but we now
have the additional equations seen in equation[2] and the
variables required for them. Each differential equation
is then returned in the same order they were provided,
as in the first part.
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We then set the initial conditions for both the moon
and probe. The values for the moon are all the same
as in section 1. The initial conditions for the probe are
found by selecting an appropriate distance for the probe
from the moons center, then again balancing centripetal
and gravitational forces to find its velocity around the
moon. However, as the coordinate system is relative to
the earth and not the moon, both the initial position and
velocity of the probe relative to the moon must be added
to the position and velocity of the moon relative to the
earth, in order to get the state of the probe relative to
the earth. The tolerances for this part were set lower, as
the motion of the probe is more precise than that of the
moon, so this was required to achieve a good degree of
accuracy.

The results are then calculated using solve_ivp ().
Again this is very similar to the procedure in part 1,
only with more variables for the initial state. Matplotlib
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Figure 1: Circular orbit as a result of standard initial
conditions

is again used to plot the position of both the moon and
the probe in the same fashion as part 1.

4 Results and Discussion

4.1 Orbit of the Moon

When given standard starting conditions, the simulation
provided a stable and circular orbit, as expected, shown
in figure [T

The simulation kept its shape for a large number of
orbits, showing its stability. When the initial velocity was
altered but the radius of the orbit was held, we observed
a range of effects. For small alterations, approximately
in the range of 0.1ljvelocityFactorjl.41, stable elliptical
orbits were produced, as shown in figures [2] and [3]

For velocities less than 0.1*v, the simulation began to
fail, producing what was effectively noise. At velocities
greater than 1.41%*v, the moon appears to escape the
orbit of the earth, as shown in figure [d] These trajecto-
ries continued with increasing t_max, to the point where
simulation took a very long time, suggesting that they
are not simply very large orbits.

This can be compared with what we would expect



1e8 Orbit of moon around earth

—— Moon

y coordinate (m)
o
°

2 3 4
X coordinate (m) le8

°
-

Figure 2: Elliptical orbit with a velocity of 0.4*v
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Figure 3: Elliptical orbit with a velocity of 1.3*v
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Figure 4: Moon escaping the earths orbit

using the escape velocity equation, which is given by

o .

As we find the velocity for a circular orbit by balancing
centripetal and gravitational force, we use the equation

v=14]— (4)

We can see that the difference between equation 3| and
equation [4] is simply a factor of v/2, or 1.414, so our
model holds well with what we would expect.

4.2 Lunar Probe

For standard starting values for section 2, we again see
the moon in a stable circular orbit around the earth, and
the probe forms a stable orbit around the moon as well,
as shown in figure 5| When altering the initial velocity of
the moon, for small changes we again see stable elliptical
orbits. With increases above 1.41*v, causing the moon
to escape the earth, the probe continues to orbit the
moon in a stable manner, as shown in figure [ When we
decrease the starting velocity of the moon, it continues
in a stable orbit, however when reaching the periapsis
of the moons orbit, the probe is accelerated enough to
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Figure 6: Moon and probe escaping the earth
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Figure 5: Circular orbit of moon and probe
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Figure 7: Probe escaping the moon

escape the orbit of both the moon and the earth, as
shown in figurd7] The point at which the probe escapes
the moon can be increased by changing the direction of
the probes orbit around the moon, simply by setting vpy0
= vm-vpm, rather than vm+vpm. Now, when the probe
escapes the orbit of the moon, it is still gravitationally
bound to the earth and enters an erratic orbit around it,
shown in figure [§]

5 Conclusion

Overall, the model produced mostly accurate results
when given starting values somewhat close to realistic
values, however began to lose clarity at extreme values,
especially with low starting velocities. This could likely
be improved by decreasing the tolerance of the model,
however this would lead to larger calculation times. The
model agreed with the value for the escape velocity of
the moon, showing a good accuracy when provided with
somewhat realistic data. Other improvements to the
model could include adding a third dimension, as well
as modelling the effects of the rotation of each of the
objects, as these tidal forces do affect the path of the
moons orbit in real life.
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Figure 8: Probe escaping the moon and entering an
orbit around the earth
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