Added part 2
This commit is contained in:
parent
68db9268d7
commit
ea1b5a04f7
1 changed files with 72 additions and 3 deletions
|
|
@ -58,6 +58,75 @@ def part1(radFactor, orbits):
|
|||
ax.axvline(x=0, color='k', linewidth=0.5)
|
||||
plt.show()
|
||||
|
||||
def part2(radFactor, orbits):
|
||||
#Part one Diffeq
|
||||
def f_part1(t, state, Me, Mm, G):
|
||||
xm, ym, vx, vy, xp, yp, vpx, vpy = state
|
||||
|
||||
xpm = xp-xm
|
||||
ypm = yp-ym
|
||||
|
||||
dxmdt = vx
|
||||
dymdt = vy
|
||||
dvxdt = -(Me*G*xm)/((xm**2+ym**2)**(3/2))
|
||||
dvydt = -(Me*G*ym)/((xm**2+ym**2)**(3/2))
|
||||
|
||||
dxpdt = vpx
|
||||
dypdt = vpy
|
||||
dvpxdt = -((Me*G*xp)/((xp**2+yp**2)**(3/2)))-((Mm*G*xpm)/((xpm**2+ypm**2)**(3/2)))
|
||||
dvpydt = -((Me*G*yp)/((xp**2+yp**2)**(3/2)))-((Mm*G*ypm)/((xpm**2+ypm**2)**(3/2)))
|
||||
|
||||
return (dxmdt, dymdt, dvxdt, dvydt, dxpdt, dypdt, dvpxdt, dvpydt)
|
||||
|
||||
|
||||
# Initial Conditions
|
||||
Me = 5.97*(10**24)
|
||||
Mm = 7.35*(10**22)
|
||||
G = 6.67*(10**-11)
|
||||
|
||||
t_min = 0
|
||||
t_max = 2360620*int(orbits)
|
||||
numpoints = 2000*int(orbits)
|
||||
t = np.linspace(t_min, t_max, numpoints)
|
||||
|
||||
rm = 384400000
|
||||
vm = sqrt((G*Me)/rm)*float(radFactor)
|
||||
|
||||
rpm = 10000000
|
||||
vpm = sqrt((G*Mm)/rpm)
|
||||
|
||||
xm0 = rm
|
||||
ym0 = 0
|
||||
vx0 = 0
|
||||
vy0 = vm
|
||||
|
||||
xp0 = rpm+rm
|
||||
yp0 = 0
|
||||
vpx0 = 0
|
||||
vpy0 = vm+vpm
|
||||
|
||||
rtol = 1e-6
|
||||
atol = 1e-9
|
||||
|
||||
|
||||
#Solver
|
||||
results = solve_ivp(f_part1, (t_min,t_max), (xm0, ym0, vx0, vy0, xp0, yp0, vpx0, vpy0), args=(Me, Mm, G), t_eval=t, atol=atol, rtol=rtol)
|
||||
|
||||
|
||||
#Graph plotting
|
||||
ax=plt.axes() # This creates some axes, so that we
|
||||
ax.set_aspect(1) # can set the aspect ratio to 1 i.e.
|
||||
# x and y axes are scaled equally.
|
||||
ax.set_xlabel("x coordinate (m)") # Must label axes (with
|
||||
ax.set_ylabel("y coordinate (m)") # units) and give
|
||||
ax.set_title("Orbit of moon around earth") # plot title.
|
||||
ax.plot(results.y[0],results.y[1], label="Moon" ) # Make the plot
|
||||
ax.plot(results.y[4],results.y[5], label="Probe")
|
||||
ax.legend(loc='upper right') # and add a key.
|
||||
ax.axhline(y=0, color='k', linewidth=0.5)
|
||||
ax.axvline(x=0, color='k', linewidth=0.5)
|
||||
plt.show()
|
||||
|
||||
|
||||
MyInput = '0'
|
||||
while MyInput != 'q':
|
||||
|
|
@ -70,9 +139,9 @@ while MyInput != 'q':
|
|||
part1(radFactor, orbits)
|
||||
elif MyInput == '2':
|
||||
print('You have chosen part (2): earth-moon-probe system')
|
||||
#
|
||||
# put your code for part (2) here
|
||||
#
|
||||
radFactor = input(f'Enter the velocity scalar. A value of 1 will result in a circular orbit, and anything else will give an elliptical orbit: ')
|
||||
orbits = input(f'Enter the approximate number of orbits desired: ')
|
||||
part2(radFactor, orbits)
|
||||
elif MyInput != 'q':
|
||||
print('This is not a valid choice')
|
||||
print('You have chosen to finish - goodbye.')
|
||||
Loading…
Add table
Add a link
Reference in a new issue