Update Exercise 2

This commit is contained in:
Ceres 2025-11-29 13:36:45 +00:00
parent ed9ad57aef
commit d28aae39d9
Signed by: ceres-sees-all
GPG key ID: 9814758436430045

View file

@ -13,28 +13,143 @@ def Fresnel2dimag(yp, xp, y, x, k, z):
c = 3e8 c = 3e8
e0 = 8.85e-12 e0 = 8.85e-12
def plot1D(aperture, z, k, screen_range): def plot1D():
def genData(aperture, z, k, screen_range):
y = 0
y = 0 xp1=yp1=-aperture/2
xp2=yp2=aperture/2
xp1=yp1=-aperture/2
xp2=yp2=aperture/2
xs = np.linspace(-screen_range/2, screen_range/2, num=1000) xs = np.linspace(-screen_range/2, screen_range/2, num=1000)
intensities = [] intensities = []
for x in xs: for x in xs:
realpart, realerror = integrate.dblquad(Fresnel2dreal, xp1, xp2, yp1, yp2, args=(y, x, k, z), epsabs=1e-11, epsrel=1e-11) realpart, realerror = integrate.dblquad(Fresnel2dreal, xp1, xp2, yp1, yp2, args=(y, x, k, z))
imagpart, imagerror = integrate.dblquad(Fresnel2dimag, xp1, xp2, yp1, yp2, args=(y, x, k, z), epsabs=1e-11, epsrel=1e-11) imagpart, imagerror = integrate.dblquad(Fresnel2dimag, xp1, xp2, yp1, yp2, args=(y, x, k, z))
I = c*e0*(realpart**2+imagpart**2) I = c*e0*(realpart**2+imagpart**2)
intensities.append(I) intensities.append(I)
return xs, intensities return xs, intensities
ax = plt.axes() ax = plt.axes()
xs, intensities = plot1D(2e-4, 0.005, 8.377e6, 0.002) xs, intensities = genData(2e-4, 0.005, 8.377e6, 0.002)
ax.plot(xs, intensities) ax.plot(xs, intensities)
# xs, intensities = plot1D(2e-5, 0.05, 8.377e6, 0.015) # xs, intensities = genData(2e-5, 0.05, 8.377e6, 0.015)
# ax.plot(xs, intensities) # ax.plot(xs, intensities)
plt.show() plt.show()
def plot2Drectangular():
def genData(aperture, z, k, screen_range):
xp1=yp1=-aperture/2
xp2=yp2=aperture/2
xs = np.linspace(-screen_range/2, screen_range/2, num=40)
ys = np.linspace(-screen_range/2, screen_range/2, num=40)
intensities = []
for y in ys:
xIntensities = []
for x in xs:
realpart, realerror = integrate.dblquad(Fresnel2dreal, xp1, xp2, yp1, yp2, args=(y, x, k, z))
imagpart, imagerror = integrate.dblquad(Fresnel2dimag, xp1, xp2, yp1, yp2, args=(y, x, k, z))
I = c*e0*(realpart**2+imagpart**2)
xIntensities.append(I)
intensities.append(xIntensities)
intensities = np.array(intensities)
return intensities
intensity = genData(2e-4, 0.005, 8.377e6, 0.002)
extents = (-0.01,0.01,-0.01,0.01)
plt.imshow(intensity,vmin=0.0,vmax=1.0*intensity.max(),extent=extents,origin="lower",cmap="nipy_spectral_r")
plt.colorbar()
plt.show()
def plot2Dcircular():
def genData(aperture, z, k, screen_range):
xp1=-aperture/2
xp2=aperture/2
def yp1func(xp):
return -np.sqrt((aperture/2)**2-(xp**2))
def yp2func(xp):
return np.sqrt((aperture/2)**2-(xp**2))
xs = np.linspace(-screen_range/2, screen_range/2, num=50)
ys = np.linspace(-screen_range/2, screen_range/2, num=50)
intensities = []
for y in ys:
xIntensities = []
for x in xs:
realpart, realerror = integrate.dblquad(Fresnel2dreal, xp1, xp2, yp1func, yp2func, args=(y, x, k, z))
imagpart, imagerror = integrate.dblquad(Fresnel2dimag, xp1, xp2, yp1func, yp2func, args=(y, x, k, z))
I = c*e0*(realpart**2+imagpart**2)
xIntensities.append(I)
intensities.append(xIntensities)
intensities = np.array(intensities)
return intensities
intensity = genData(2e-5, 0.05, 8.377e6, 0.015)
extents = (-0.01,0.01,-0.01,0.01)
plt.imshow(intensity,vmin=0.0,vmax=1.0*intensity.max(),extent=extents,origin="lower",cmap="nipy_spectral_r")
plt.colorbar()
plt.show()
def monte():
N = 1000
def doubleInteg(x, y, xp, yp, z, k, aperture):
values = []
for i in range(len(xp)):
if (xp[i]**2+yp[i]**2) > aperture:
values.append(0)
else:
value = np.exp(((1j*k)/(2*z))*((x-xp)**2+(y-yp)**2))
values.append(value.real)
return np.array(values)
def monteCarlo(x, y, z, k, aperture):
xp = np.random.uniform(low=(-aperture/2), high=aperture/2, size=N)
yp = np.random.uniform(low=(-aperture/2), high=aperture/2, size=N)
values = doubleInteg(x, y, xp, yp, z, k , aperture)
mean = values.sum()/N
meansq = (values*values).sum()/N
integral = aperture*mean
error = aperture*np.sqrt((meansq-mean*mean)/N)
return integral, error
def genData(aperture, z, k, screen_range):
xs = np.linspace(-screen_range/2, screen_range/2, num=50)
ys = np.linspace(-screen_range/2, screen_range/2, num=50)
constant = k/2*np.pi*z
intensities = []
for y in ys:
xIntensities = []
for x in xs:
integral, error = monteCarlo(x, y, z, k, aperture)
I = c*e0*constant*integral
xIntensities.append(I)
intensities.append(xIntensities)
intensities = np.array(intensities)
return intensities
intensity = genData(2e-4, 0.005, 8.377e6, 0.002)
extents = (-0.001,0.001,-0.001,0.001)
plt.imshow(intensity,vmin=0.0,vmax=1.0*intensity.max(),extent=extents,origin="lower",cmap="nipy_spectral_r")
plt.colorbar()
plt.show()
monte()